Reflections (Part 2)

These notes are intended as a supplement to section 3.2 (p. $178-183$) in your workbook. The topics discussed here are not included in the workbook.

Even Functions

A function is called even if $f(-x)=f(x)$ for all values of x in its domain. The graph of an even function is symmetric with respect to the y-axis. In other words, for every point (x, y) on the graph, there is a corresponding point $(-x, y)$.

Example 1

If $f(x)=x^{2}$, then draw the graphs of $y=f(x)$ and $y=f(-x)$ on the same axes.

To test if a function is even, simply replace x with $-x$ and simplify. If the result is the same as the original function, then the function is even.

Example 2

Is $f(x)=x^{4}+x^{2}-3$ an even function?

Note: Any polynomial function involving only even powers of x will be even.

Odd Functions

A function is called odd if $f(-x)=-f(x)$ for all values of x in its domain. The graph of an odd function is symmetric with respect to the origin. In other words, for every point (x, y) on the graph, there is a corresponding point $(-x,-y)$.

Example 3

The graph of $f(x)=x^{3}+2 x$ is shown on the right. Draw the graphs of $y=f(-x)$ and $y=-f(x)$ on the same axes.

To test if a function is odd, you can test algebraically to see if $f(-x)=-f(x)$.

Example 4

Is the function $f(x)=x^{5}+3 x^{3}+5 x$ odd?

Note: A polynomial function involving only odd powers of x will be odd.

Supplemental Worksheet \#1

1. State whether each of the following is even, odd, or neither.
a) $f(x)=3 x^{2}$
b) $f(x)=-4 x^{2}+3 x$
c) $f(x)=|3 x|$
d) $f(x)=7$
2. How can you test whether or not a function is symmetric with respect to the y-axis?
3. For each of the following equations, indicate whether the graph is symmetric with respect to the y-axis.
a) $y=x^{2}$
b) $y=\sqrt{x}$
c) $y=x^{4}+x^{2}$
4. The graph shown below is part of an EVEN function. Complete the graph.

5. The graph shown below is part of an ODD function. Complete the graph.

